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In contrast to normal fluids, a granular fluid under shear supports a steady state with uniform temperature
and density since the collisional cooling can compensate locally for viscous heating. It is shown that the
hydrodynamic description of this steady state is inherently non-Newtonian. As a consequence, the Newtonian
shear viscosity cannot be determined from experiments or simulation of uniform shear flow. For a given degree
of inelasticity, the complete nonlinear dependence of the shear viscosity on the shear rate requires the analysis
of the unsteady hydrodynamic behavior. The relationship to the Chapman-Enskog method to derive hydrody-
namics is clarified using an approximate Grad’s solution of the Boltzmann kinetic equation.
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I. INTRODUCTION

Consider a fluid between parallel plates in thex,z plane
separated by a distanceL and with relative velocityU along
the positivex direction. Given appropriate boundary condi-
tions, the fluid undergoes simple shear with the local velocity
field given byux=ay, uy=uz=0, wherea=U /L is the con-
stant shear rate. The work done by the plates on the fluid
near the boundaries tends to increase the temperature locally
due to its viscosity. For normal fluids, this is compensated by
a heat flux toward the center with a corresponding tempera-
ture gradient characterizing Couette flow in the steady state.
A quite different steady state is possible for granular fluids
where both the temperature and density fields are spatially
uniform, called simple or uniform shear flow(USF) [1,2].
This is possible because the particle collisions in a granular
fluid are inelastic and there is a continual loss of energy. This
collisional cooling can compensate locally for the viscous
heating so that no heat flux is generated. If the temperatures
at the walls are not controlled the fluid autonomously seeks
the temperature at which this exact balance between colli-
sional cooling and viscous heating occurs. Otherwise, for
fixed wall temperature one or the other will dominate leading
again to Couette flow but with the curvature of the tempera-
ture field controlled by both mechanisms. This more general
case has been discussed in detail elsewhere[3] including
USF as a special case. Here, attention will be limited to the
special features of USF.

The steady USF has been extensively studied. Molecular
dynamics and Monte Carlo simulations[4–10] have been
performed to measure the dependence of the stress tensor on

the density and inelasticity. On the theoretical side, Lunet al.
[11] have obtained the rheological properties of a dense gas
for small inelasticity, while Jenkins and Richman[12] have
used a maximum-entropy approximation to solve the Enskog
equation. This method has been subsequently extended to
highly inelastic spheres[13]. Selaet al. [14] have solved the
Boltzmann equation to third order in the shear rate, finding
normal stress differences. Some progress has been made by
using model kinetic equations for dilute granular gases[15],
as well as for dense granular gases[16]. Exact solutions
derived in both cases compare quite well with Monte Carlo
simulations, even for strong dissipation. Similar studies for
multi-component systems are much scarcer, although some
recent work has been carried out[10,17–19].

Normally, transport properties are defined for general
states with the temperature, shear rate, and restitution coef-
ficient as independent variables. For example, the shear vis-
cosity as given by the Chapman-Enskog solution to the Bolt-
zmann equation[20] has the form for shear flowh
=hsT,a,ad, and the Newtonian shear viscosity is obtained
from it at zero shear rate,h0sT,ad=hsT,a=0,ad. However,
in the steady state of USF the condition for balancing colli-
sional cooling and viscous heating implies that the steady
state temperature is a function of the shear ratea and the
coefficient of restitutiona measuring the degree of inelastic-
ity of the particles, Ts=Tssa,ad. In this case h
=h(Tssa,ad ,a,a)=hssa,ad=hs8sTs,ad. This complication
raises two interesting questions:

(1) For sufficiently smalla, is it possible to describe USF
using Newtonian hydrodynamics?

(2) If hssa,ad is measured in USF, can the Newtonian
viscosityh0sT,ad be deduced from it?

The objective of this paper is to answer these two ques-
tions in the general context of hydrodynamics for granular
fluids. It is shown that the answer is negative in both cases,
implying that USF is inherently non-Newtonian and that the
full nonlinear dependence ofhsT,a,ad on the shear rate is
required, even for smalla, at anyaÞ1. This result is impor-
tant because it identifies a fundamental and unbridgeable gap
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between Navier-Stokes hydrodynamics and the hydrodynam-
ics for steady shear flow. There is no possibility of using
USF to study the Newtonian viscosity(e.g., by molecular
dynamics simulation); there is no possibility of using the
Navier-Stokes equations to describe USF or states near it
(e.g., the stability of USF). This is not an entirely negative
result, however, because it shows that USF is a rich testing
ground for the study of rheology. Any measurement will nec-
essarily be illustrating some rheological effect.

These results may seem counterintuitive at first as with
many conceptual differences between granular and real flu-
ids. However, the steady state considered here for the granu-
lar fluid does not exist for a real fluid so intuition is not
reliable in this case. The analysis presented here, and illus-
trated in detail for a dilute gas, is important because similar
failures of the Navier-Stokes level hydrodynamics must be
expected for other steady states specific to granular fluids.
This peculiar limitation of Newtonian hydrodynamics may
apply generically when the steady state exists only because
of the internal cooling mechanism, rather than as a conse-
quence of controllable external fields or boundary forces.
The steady state implies the equivalence of spatial heat con-
duction, viscous heating, and collisional cooling, and a con-
sequent relationship between the heat flux, momentum flux,
and cooling rate(see below). For a given cooling rate(i.e.,
given restitution coefficient) the gradients of the hydrody-
namic fields can no longer be controlled independently to
assure the validity of the Newtonian limit. This phenomenon
is elaborated further in the next section for USF based on the
macroscopic balance equations for mass, energy, and mo-
mentum, and idealized boundary conditions for a general
granular fluid. This analysis assumes only the existence of a
hydrodynamic description, but is not limited to any small
gradient, small inelasticity, or other approximation. A more
detailed illustration from the Boltzmann kinetic theory is
given in Sec. III. An important point of this kinetic theory
analysis is the determination of the rheological equation of
statehsT,a,ad for both steady and unsteady states of USF.
In the unsteady state the temperature increases(decreases)
depending on whether the viscous heating of the initial state
is larger(smaller) than the collisional cooling. The three pa-
rametersa,a ,T can be controlled independently, and there is
a small shear rate domain for which the unsteady fluid is
Newtonian. In the steady state, however, these parameters
are constrained,T=Tssa,ad, such thathsTssa,ad ,a,ad is
never in its Newtonian limit for anya,1. These results and
their importance for the study of transport in granular fluids
are summarized with comments in the last section.

II. HYDRODYNAMICS FOR USF

An idealized granular fluid consists of smooth hard
spheressd=3d or diskssd=2d of diameters and massm. The
collisions between particles are characterized through a con-
stant coefficient of normal restitutiona with values 0,a
ø1. The elastic limit corresponds toa=1. The exact macro-
scopic balance equations for mass, energy, and momentum
are

Dtn + n = ·u = 0, s1d

sDt + zdT +
2

dn
sPij¹ jui + = ·qd = 0, s2d

Dtui + smnd−1¹ jPij = 0, s3d

wheren is the density,T is the granular temperature,u is the
flow velocity, Dt=]t+u ·¹ is the material derivative,z is the
cooling rate,P is the pressure tensor, andq is the heat flux.
On physical grounds,z has essentially the formz<ns1
−a2d, where n~ÎT is a mean collision frequency and 1
−a2 is the fraction of energy lost in each inelastic collision.
In order to get a closed set of hydrodynamic equations from
(1)–(3), z, P, andq must be specified as functionals of the
fields n, T, andu. However, some interesting results can be
obtained for the purposes here even at this exact level. We
emphasize that the analysis of this section and its conclusion
do not depend on any specific form for the rheological equa-
tion of state, only its scaling with respect to the available
hydrodynamic fields(dimensional analysis).

An idealized macroscopic state of USF is characterized by
the forms[21]

nsr ,td = n, Tsr ,td = Tstd, ux = ay, uy = uz = 0. s4d

The presumed geometry is that described above. More pre-
cisely, this linear velocity profile assumes no boundary layer
near the walls and is possible for special periodic boundary
conditions in the local Lagrangian frame[22]. Since the den-
sity is a constant, it plays no significant role in the following
and the dependence of properties on it will be suppressed.
From symmetry, the cooling rate, heat flux, and pressure ten-
sor must have the forms in the hydrodynamic state

z = z„Tstd,a,a…, q = 0, = jPij = 0. s5d

The balance equations(1) and (3) are satisfied exactly with
these choices, while Eq.(2) becomes

]tTstd = −
2

dn
aPxy„Tstd,a,a… − z„Tstd,a,a…Tstd. s6d

The functional forms for the scalarszsT,a,ad and
PxysT,a,ad must be determined from a more microscopic
basis. An example from kinetic theory is provided in the next
section. Then, Eq.(6) provides a closed hydrodynamic equa-
tion to determine the temperatureTstd for given initial con-
dition Ts0d and specification of the constantsa and a. The
first term on the right side is positive and represents viscous
heating. To make this more explicit it is usual to introduce
the nonlinear shear viscosityhsT,a,ad by

PxysT,a,ad ; − hsT,a,ada. s7d

A Newtonian fluid is that for which the viscosity and cooling
rate becomes independent of the shear rate,

hsT,a,ad → hsT,a = 0,ad ; h0sT,ad,

zsT,a,ad → zsT,a = 0,ad ; z0sT,ad. s8d

The corresponding hydrodynamic equation for a Newtonian
fluid becomes
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]tTstd = − z0sTstd,adTstd

+ a2F 2

dn
h0sTstd,ad − z2sTstd,adTstdG . s9d

Here, for consistency, the cooling rate also has been ex-
panded to second order in the shear rate,

zsTstd,a,ad → z0sTstd,ad + a2z2sTstd,ad. s10d

The Newtonian fluid equation(9) appears quite useful as a
means to measure its viscosity. First, the cooling rate
z0sTstd ,ad is determined by measuring the time dependence
of Tstd at different values ofa at zero shear rate. Next, the
same measurement is performed as a function of the shear
rate to determine the combinations2/dndh0sTstd ,ad
−z2sTstd ,adTstd. In the casez2=0 (see the next section for an
example) this determines the Newtonian viscosity. Two ques-
tions arise at this point. First, can the measurement of the
Newtonian viscosity be simplified by considering only the
steady state? Second, under what conditions does the New-
tonian limit for the steady state apply? To answer these ques-
tions we have to take into account that the domain of validity
of the Newtonian description is restricted to small shear
rates. To be more precise, a dimensionless shear rate must be
introduced. The only other relevant frequency for the fluid is
its mean collision frequencyn(Tstd)~ÎTstd. Consequently,
the relevant dimensionless shear rate, cooling rate, and shear
viscosity are defined by

a*
„Tstd… =

a

nsTstdd
, z*sa* ,ad =

zsTstd,a,ad
nsTstdd

,

h*sa* ,ad =
nsTstdd
nTstd

hsTstd,a,ad, s11d

wherez*sa* ,ad and h*sa* ,ad can depend on time and tem-
perature only througha*sTstdd, in order to be dimensionless.
Note that the reduced shear ratea* is actually a measure of
the granular temperature sinceT~a*−2. In the steady state,
Eq. (6) becomes

a*2 =
dz*sa* ,ad
2h*sa* ,ad

. s12d

The solution to this equation givesas
*sad, that depends only

on a and thus cannot be made small by controlling the shear
ratea. In general,as

*sad!1 only in the quasielastic limit 1
−a!1,

as
*2sad → dz0

*sad
2h0

*sa = 1d
; a0

*2sad , 1 − a ! 1, s13d

where we have taken into account thatz0
*sad~1−a2,2s1

−ad in the quasielastic limit. In this case the dimensionless
steady state shear viscosity becomeshs

*sad=h*sas
*sad ,ad

→h*sa0
*sad ,ad. Since, according to Eq.(13), a0

* is small, the
steady state shear viscosity is expected to differ from the
dimensionless Newtonian viscosityh0

*sad=h*sa* =0,ad by a
(super-Burnett) term of ordera0

*2:

hs
*sad − h0

*sad , a0
*2sad , 1 − a. s14d

On the other hand, by expanding the Newtonian shear vis-
cosity h0

*sad around its value in the elastic case, we have

h0
*sad − h0

*sa = 1d , 1 − a, s15d

for small inelasticities. Therefore, Eqs.(14) and (15) show
that in the quasielastic limit the steady state shear viscosity
hs

*sad differs from the Newtonian viscosityh0
*sad as much as

the latter differs from that of the elastic gas. This shows that
a measurement of the steady state temperature to determine
as

*sad does not allow determination of the Newtonian viscos-
ity, even for 1−a!1. The a dependence ofh0

*sad=h*sa*

=0,ad cannot be isolated from thea dependence of
h*sas

*sad ,ad. Both viscosities coincide only in the trivial
casea=1.

In summary, for any chosena,a ,Ts0d the steady state
viscosity is h*sas

*sad ,ad and the system samples a non-
Newtonian value from the general rheological equation of
stateh*sa* ,ad that is always different from the Newtonian
value.

III. DESCRIPTION FROM THE BOLTZMANN
KINETIC THEORY

To explore this phenomenon in more detail it is necessary
to calculate the rheological equation of stateh*sa* ,ad. This
requires a more microscopic analysis such as kinetic theory.
At low density the granular Boltzmann equation provides the
appropriate starting point.

A. Boltzmann equation and Newtonian viscosity

The Boltzmann kinetic equation determines the probabil-
ity density fsr ,v ,td for a particle to have positionr and
velocity v at time t in a low density gas. It has the form

S ]

] t
+ v · =D fsr ,v,td = J†r ,vufstd‡. s16d

The right-hand side describes the effects of inelastic pair
collisions. The detailed form of the Boltzmann collision op-
erator,J, is not required here beyond noting the properties
necessary for the macroscopic balance equations

E dv1
1

v

1

2
msv − ud22Jfr ,vufstdg=1

0

0

−
d

2
nTz2 . s17d

Here the densityn, the temperatureT, and the macroscopic
flow velocity u are defined in terms offsr ,v ,td by

_
nsr ,td

nsr ,tdusr ,td
d

2
nsr ,tdTsr ,td 2 =E dv1

1

v

1

2
msv − ud22 fsr ,v,td. s18d

The two zeros on the right-hand side of Eq.(17) correspond
to conservation of mass and momentum, while the last term
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results from nonconservation of energy. The properties(17)
lead to the macroscopic balance equations(1)–(3), with the
following microscopic expressions for the pressure tensor,
the heat flux, and the cooling rate:

Pijsr ,td = mE dvViVj fsr ,v,td, s19d

qsr ,td =
m

2
E dvV2V fsr ,v,td, s20d

zsr ,td = s1 − a2d
mpsd−1d/2sd−1

4dGSd + 3

2
Dnsr ,tdTsr ,td

3E dvE dv1uv − v1u3fsr ,v,tdfsr ,v1,td. s21d

In Eqs.(19) and (20), V =v−usr ,td is the peculiar velocity.
It is straightforward to determine the Navier-Stokes shear

viscosity coefficienth0sT,ad by using the Chapman-Enskog
method[23]. The result is[20,24,25]

h0sT,ad =
nT

nsTd
h0

*sad, s22d

where

nsTd =
8psd−1d/2sd−1

sd + 2dGsd/2d
nS T

m
D1/2

s23d

is an effective collision frequency, and

h0
*sad = fbsad + 1

2z0
*sadg−1. s24d

Here z0
*sad=z0/n is the dimensionless cooling rate in the

homogeneous cooling state, whilebsad is a dimensionless
function of the restitution coefficient given in terms of the
solution to the linearized Boltzmann equation. Explicit re-
sults forz0

* andb can be obtained by considering the leading
terms in a Sonine polynomial expansion. In that approxima-
tion,

z0
*sad =

d + 2

4d
s1 − a2d, s25d

bsad =
1 + a

2
F1 −

d − 1

2d
s1 − adG . s26d

B. Uniform shear flow

It becomes prohibitively difficult to go beyond Navier-
Stokes order to get the exact full dependence ofh*sa* ,ad on
a* from the Boltzmann equation. On the other hand, a good
estimate is provided by considering the leading Sonine ap-
proximation to the distribution function(Grad’s method)
[18,26].

In the special case of USF the solution to the Boltzmann
kinetic equation is spatially uniform when expressed in terms
of the velocity relative to the local flow,Vx=vx−ay, Vy

=vy,Vz=vz. Consequently, the Boltzmann equation(16) be-
comes[21]

S]t − aVy
]

] Vx
D fsV,td = JfV ufstdg. s27d

Multiplying both sides of Eq.(27) by mViVj and integrating
over velocity, we get

]tPij + asdixPyj + d jxPiyd = mE dvViVjJfV ufg ; − Li j .

s28d

The exact expression of the collision integralLi j is not
known, even in the elastic case. However, a good estimate
can be expected by using Grad’s approximation

fsVd → f0sVdF1 +
m

2T
SPij

nT
− di jDViVjG , s29d

where

f0sVd = nsm/2pTdd/2 exps− mV2/2Td s30d

is the local equilibrium distribution function. When Eq.(29)
is inserted into the definition ofLi j and terms nonlinear in
Pij /nT−di j are neglected, one gets[26]

Li j = nfbsPij − di jd + z0
*Pijg, s31d

wherez0
* andb are given by Eqs.(25) and(26), respectively.

It is worth noting that Eq.(31) coincides with the one ob-
tained from a simple kinetic model[15,27].

The three relevant independent equations from(28) and
(31) are

]tp + z0p +
2a

d
Pxy = 0, s32d

]tPxy + sbn + z0dPxy + aPyy = 0, s33d

]tPyy + sbn + z0dPyy − bnp = 0, s34d

wherep=nT=Pii /d is the low density pressure. If we define
the dimensionless quantities

Pij
* std =

Pijstd
nTstd

, a*std =
a

nsTstdd
,

tstd =E
0

t

dt8nsTst8dd, s35d

then Eqs.(32)–(34) become

2]t ln a* = z0
* +

2

d
Pxy

* a* , s36d

]tPxy
* = − a*Pyy

* − Pxy
* Sb −

2

d
Pxy

* a*D , s37d
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]tPyy
* = − Pyy

* Sb −
2

d
Pxy

* a*D + b. s38d

The variablet is the dimensionless time measured as the
average collision number. The solution to these nonlinear
equations givesa* , Pxy

* , andPyy
* as functions oft for a given

value ofa. The rheological equation of state is then obtained
from

h*sa*stdd = −
Pxy

* std
a*std

. s39d

1. Steady state solution

Consider first the steady state solution. Equation(36)
gives

Pxy,s
* = −

dz0
*

2as
* , s40d

while Eqs.(37) and (38) give

Pyy,s
* = bsb + z0

*d−1, Pxy,s
* = − as

*bsb + z0
*d−2. s41d

The value ofa* in the steady state is obtained from Eqs.(40)
and (41),

as
*sad =Îdz0

*sad
2bsad

fbsad + z0
*sadg. s42d

As anticipated above, it is independent of the initial tempera-
ture and shear ratea. Appendix A shows that the steady state
solution (41) and (42) is indeed a(linearly) stable solution.

The second equality in(41) allows one to identify the
steady state shear viscosity as

hs
*sad = −

Pxy
*

a* = bsadfbsad + z0
*sadg−2. s43d

This gives the explicit form for the steady state shear viscos-
ity, showing it is also independent of the shear ratea and the
initial temperature. Furthermore, its dependence ona is
qualitatively different from that of Eq.(24) for a Newtonian
fluid. This is illustrated in Fig. 1, which also shows that the
analytical results compare favorably well with simulation
data obtained from the direct simulation Monte Carlo
(DSMC) method[28,29]. Clearly, there is no relationship of
the steady state shear viscosity to the Newtonian viscosity at
any value ofa. While the Newtonian viscosity ish0

*sad.1,
the steady state viscosity ishs

*sad,1. In the quasielastic
limit, Eqs. (24), (42), and(43) yield

h0
*sad → 1 +

3d − 4

4d
s1 − ad, s44d

as
*2sad → a0

*2sad =
d + 2

4
s1 − ad, s45d

hs
*sad → 1 −

5

2d
s1 − ad. s46d

Equations(44)–(46) confirm the qualitative arguments be-
hind Eqs.(13)–(15). Eliminating a between Eqs.(45) and
(46), one has

hs
*sad → 1 −

10

dsd + 2d
as

*2sad s47d

in the quasielastic limit.

2. Unsteady hydrodynamic solution

The more general solution to Eqs.(36)–(38) correspond-
ing to hydrodynamics is that for which all time dependence
occurs through the hydrodynamic fields(the Chapman-
Enskog “normal” solution). The time dependence is due only
to the temperature for USF which occurs in the dimension-
less forms above through their dependence ona*std
=a/nsTstdd,

]tPij
* =

] Pij
*

] a* ]ta
* . s48d

Then, using Eq.(36), Eqs.(37) and (38) become

] Pxy
*

] a* =

− 2Pyy
* −

2

a* Pxy
* Sb −

2

d
Pxy

* a*D
z0

* +
2

d
Pxy

* a*

, s49d

FIG. 1. Plot of the dimensionless Newtonian shear viscosity
h0

*sad (dashed line) and the dimensionless steady state shear viscos-
ity hs

*sad (solid line) for d=3, as given by Eqs.(24) and (43),
respectively. Filled circles[28] and open circles[29] represent
simulation data obtained from the numerical solution of the Boltz-
mann equation by the DSMC method.
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] Pyy
*

] a* =

2b − 2Pyy
* Sb −

2

d
Pxy

* a*D
a*Sz0

* +
2

d
Pxy

* a*D . s50d

This is a set of two coupled nonlinear differential equations
that must be solved with the appropriate boundary conditions
to get thehydrodynamicsolution. There is a singular point
corresponding to the steady state solution(41) and (42), in
which case the numerators and denominators of Eqs.(49)
and (50) vanish.

The unsteady hydrodynamic solutionsh*sa* ,ad
=−Pxy

* /a* are illustrated in Fig. 2 for three different values of
a. Also shown are the special values of the steady state shear
rateas

*sad and shear viscosityhs
*sad for each curve. For each

value ofa the pointsas
* ,hs

*d splits the curveh*sa*d into two
physically different branches, one fora* ,as

* and another
one for a* .as

* . Suppose that for a given shear ratea and
initial temperatureTs0d the value ofa* is less than that for
the steady state,a*s0d=a/nsTs0dd,as

* . The cooling domi-
nates viscous heating in this case and the temperature de-
creases, leading to a larger value ofa*std. In this way, the
system evolves according to the hydrodynamic equations
along the curve until the steady state valueas

* is attained, i.e.,
a*std→as

* ast→`. A parametric plot ofh*std versusa*std
gives the branch of the curveh*sa*d corresponding to
a* ,as

* . Analogously, a heating process occurs in the oppo-
site case of an initial value fora* greater than that for the
steady state until limt→` a*std=as

* again. This provides the
branch corresponding toa* .as

* . As an example, Fig. 3
shows the time evolution ofa*std~1/ÎTstd, −Pxy

* std, and
Pyy

* std for a=0.5 and two different initial conditions:(i)

a*s0d=0.1, Pxy
* s0d=−0.1, Pyy

* s0d=1, and (ii ) a*s0d=2,
Pxy

* s0d=−0.5, Pyy
* s0d=0.4. In both cases, after about 20–30

collisions per particle, the system reaches a common steady
state with as

* =0.812, −Pxy,s
* =0.577, andPyy,s

* =0.667. We
have checked that the same asymptotic state is achieved
when starting from different initial conditions.

In order to get the branch of the hydrodynamic solution
corresponding toa* ,as

* one must apply the physical bound-
ary condition

FIG. 2. Plot of h*sa* ,ad as a function ofa* for d=3 and a
=0.9 (solid line), a=0.5 (dashed line), anda=0 (dotted line). The
thick dashed line is the locus of pointssas

* ,hs
*d, which are para-

metrically found from Eqs.(42) and (43). It intercepts the curves
representingh*sa* ,ad at the steady state values(indicated by
circles). Note that the curvesas

* ,hs
*d ends at the point corresponding

to a=0 (represented by a filled circle).

FIG. 3. Time evolution of the reduced shear ratea*std, the re-
duced shear stress −Pxy

* std, and the reduced normal stressPyy
* std for

d=3, a=0.5, and two different initial conditions:(i) a*s0d=0.1,
Pxy

* s0d=−0.1, Pyy
* s0d=1 (solid lines), and (ii ) a*s0d=2, Pxy

* s0d
=−0.5, Pyy

* s0d=0.4 (dashed lines). The horizontal dotted lines rep-
resent the steady state valuesas

* =0.812, −Pxy,s
* =0.577, andPyy,s

*

=0.667.
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lim
a*→0

h*sa* ,ad = h0
*sad, lim

a*→0

Pyy
* sa* ,ad = 1. s51d

In practice, the brancha* ,as
* for each curve of Fig. 2 has

been obtained by solving numerically the coupled set(49)
and (50) with the initial condition

Pxy
* = − h0a

*s0d, Pyy
* = 1 s52d

with a*s0d=10−5.
As said before, the branch corresponding toa* .as

* is
inaccessible starting from an initial valuea*s0d,as

* . There-
fore, in order to obtainh*sa*d for a* .as

* , one must take the
boundary condition at the point at infinity. For that case,
simple physical intuition is not enough to determine the ap-
propriate boundary conditions, so one must resort to a de-
tailed asymptotic analysis of Eqs.(49) and (50). Such an
analysis is carried out in Appendix B, where we find that
−Pxy

* ,a−1/3, Pyy
* ,a−2/3 for asymptotically largea* . More

specifically, if the shear ratea* is much larger than 1, then

Pxy
* = − S9d2b

56
D1/3

a*−1/3, s53ad

Pyy
* = S21db2

64
D1/3

a*−2/3. s53bd

The brancha* .as
* in Fig. 2 has been obtained from the

numerical solution of the coupled set(49) and (50) with the
initial conditions(53) with a*s0d=10.

IV. DISCUSSION

The primary observation here has been that granular fluids
admit hydrodynamic steady states that are inherently beyond
the scope of the Navier-Stokes or Newtonian hydrodynamic
equations. The reason for this is the existence of an internal
mechanism, collisional cooling, that sets the scale of the spa-
tial gradients in the steady state. For normal fluids, this scale
is set by external sources(boundary conditions, driving
forces) that can be controlled to admit the conditions re-
quired for Navier-Stokes hydrodynamics. In contrast, colli-
sional cooling is fixed by the mechanical properties of the
particles making up the fluid. An example is a sheared fluid
where the work done at the boundaries is balanced by a
combination of collisional cooling and internal heat flux. To
illustrate and emphasize these effects in more detail and
quantitatively, we have considered the idealized state of uni-
form shear flow(USF), for which no heat flux occurs. The
Lees-Edwards boundary conditions generating USF cannot
be applied in experimental conditions, although they can be
easily implemented in computer simulations. However, even
for the laboratory conditions of Couette flow the cooling rate
will still be a function of the hydrodynamic gradients leading
to similar non-Newtonian behavior.

In spite of the extensive prior work on USF for granular
fluids, the observation about its inherent non-Newtonian
character is apparently new although implicit in results ob-
tained from various models(e.g., the observation thata*2

,1−a). This is significant because molecular dynamics

simulation of steady USF has been used for real fluids to
measure the Newtonian shear viscosity. The analysis here
shows that this is not possible for granular fluids. More gen-
erally, it provides a caution regarding the simulation of other
steady states to study Navier-Stokes hydrodynamics when
the gradients are strongly correlated to the collisional cool-
ing. On a more positive note, these results show that USF is
an ideal testing ground for the study of rheology since any
choice of the shear rate anda will provide non-Newtonian
effects. It is one of the fascinating features of granular fluids
that phenomena associated with complex fluids are more eas-
ily accessible than for simple atomic fluids[30].

The macroscopic state of steady uniform shear flow is
simple in the sense that it is spatially uniform in the local
Lagrangian frame, and the only hydrodynamic gradient is
that of the velocity field characterized by the scalar shear rate
a. Non-Newtonian effects occur through the dependence of
the shear viscosity on the shear rate. The condition for a
steady state is an exact balance between viscous heating and
collisional cooling. It is shown in Sec. II that this implies a
value of the appropriate dimensionless shear rate that is fixed
by the restitution coefficient. Hence, it is not possible to
make this hydrodynamic gradient small, as required for the
Newtonian limit, by any initial control ofa or the initial
temperature. Further quantitative illustration of this is given
in Sec. III where the shear rate dependence of the shear
viscosity is determined from an approximate Grad’s solution
of the Boltzmann equation. The temporal approach to the
steady state via cooling or heating proceeds along a rheologi-
cal equation of state shown in Fig. 2, but the final steady
state is independent of the initial conditions and lies in the
non-Newtonian domain for any value of the restitution coef-
ficient aÞ1. One consequence is that experimental or simu-
lation measurements in steady USF provide no information
about Navier–Stokes transport.

This phenomenon of peculiar steady states for granular
fluids extends to other states as well. The steady state mac-
roscopic balance equations are

= · snud = 0, s54d

− u · = ln T −
2

dnT
sPij= jui + = ·qd = z, s55d

u · = ui + smnd−1= jPij = 0. s56d

In the absence of collisional cooling the spatial gradients can
be sustained only by boundary conditions or external forces.
However, for finitez spatial gradients can exist that are not
controlled by such external sources and their size may pre-
clude the validity of simple Navier-Stokes hydrodynamics.
Each physical state should be checked for this possibility.

As another simple example, consider the steady state of a
granular gas enclosed between two parallel plates at rest and
maintained at the same temperature. For elastic particles
such a steady state is trivially that of equilibrium at the wall
temperature. Nevertheless, for a granular gas the collisional
dissipation induces a heat flux, cf. Eq.(55), and hence a
thermal gradient, along with a density gradient, exists
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[31–33]. In the quasielastic limit, the kinetic model of the
Boltzmann equation proposed in Ref.[27] admits a solution
characterized by a constant pressurep=nT and a heat flux
given by [34]

q = −
d + 2

2

p

mn
ls

*sad = T, s57d

where

ls
*sad → 1 +

29d2 + 116d − 28

4dsd + 2d
s1 − ad. s58d

On the other hand, the expression for the heat flux in the
Navier-Stokes order given by the Chapman-Enskog expan-
sion is [20,24,25]

q = − l0sad = T − m0sad = n = −
d + 2

2

p

mn
l̄0

*sad = T,

s59d

wherel0 is the thermal conductivity,m0 is a transport coef-
ficient with no analog in the elastic case, and in the last step
we have taken into account that=p=0, so that =n
=−sn/Td=T. The expression for the dimensionless effective

thermal conductivityl̄0
*sad in the quasielastic limit is

l̄0
*sad → 1 +

3d − 4

4d
s1 − ad. s60d

Equations(58) and (60) clearly show thatls
*sadÞ l̄0

*sad. In
the three-dimensional case, for instance, the coefficient of

1−a in ls
*sad is about 20 times larger than that ofl̄0

*sad.
Therefore, the Navier-Stokes transport coefficients do not de-
scribe correctly the heat flux in the steady state, except again
in the trivial case of elastic collisions.
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APPENDIX A: LINEAR STABILITY ANALYSIS
OF THE STEADY STATE SOLUTION

In this Appendix we carry out a linear stability analysis of
the steady state solution(41) and(42) of the set of evolution
equations(36)–(38). First, we write

a*std = as
* + da*std, Pxy

* std = Pxy,s
* + dPxy

* std,

Pyy
* std = Pyy,s

* + dPyy
* std. sA1d

Substituting(A1) into Eqs.(36)–(38) and neglecting nonlin-
ear terms, one gets

]t1 da*

dPxy
*

as
*dPyy

* 2 = − L ·1 da*

dPxy
*

as
*dPyy

* 2 , sA2d

whereL is the matrix

L = 1 z0
* /2 − z0

*sb + z0
*d2/2b 0

b2/sb + z0
*d2 b + 2z0

* 1

bz0
* /sb + z0

*d − z0
*sb + z0

*d b + z0
* 2 . sA3d

In Eq. (A3) use has been made of the explicit expressions
(41) and (42) for the steady state solution. The time evolu-
tion of the deviations from the steady solution is governed by
the eigenvalues ofL. If the real parts of those eigenvalues are
positive the steady solution is linearly stable, while it is un-
stable otherwise. The solution of the characteristic equation
detsLij −,di jd=0 yields a real eigenvalue,1 and a pair of
complex conjugate eigenvalues,2, ,3. We have verified that
,1 and the real parts of,2,3 are positive definite for all values
of the coefficient of restitutiona,1, ,1 being smaller than
Re ,2,3. Consequently, the steady state solution is stable, and
the characteristic relaxation time(measured by the number of
collisions) is ,1

−1. As an illustration, Fig. 4 shows the
a-dependence of,1 and Re,2,3 for d=3. It is interesting to
note that,1→0 in the elastic limita→1. This is a conse-
quence of the fact that there is no steady solution ata=1,
namelya*std decays algebraically asa*std<s2t /dd−1/2.

The above stability analysis is restricted to small devia-
tions from the steady state solution. The proof that the steady
state solution is an attractor ast→` for any uniform(in the
Lagrangian frame) initial condition seems to be quite diffi-
cult, so that one has to resort to numerical evidence. As was
illustrated in Fig. 3, the numerical results confirm that the
steady state is indeed an attractor.

FIG. 4. Plot of the eigenvalue,1 and of the real part of,2,3 as a
function of the coefficient of restitution in the three-dimensional
case.
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APPENDIX B: HYDRODYNAMIC SOLUTION
FOR LARGE SHEAR RATES

In this Appendix we will get the asymptotic behavior of
the solution to Eqs.(49) and (50) for large values of the
reduced shear ratea* . On physical grounds, the asymptotic
solution must have the general form,

Pxy
* < − A1a

*−b1, Pyy
* < A2a

*−b2, sB1d

where A1.0, A2.0, and b2ù0. Inserting (B1) into Eqs.
(49) and (50), one has

F2b − b1z0
* +

2sb1 + 2d
d

A1a
*1−b1GA1a

*−1−b1 = 2A2a
*−b2,

sB2d

F2b − b2z0
* +

2sb2 + 2d
d

A1a
*1−b1GA2a

*−b2 = 2b. sB3d

In order to carry out a balance analysis of the leading terms
in (B2) and (B3), it is convenient to consider separately the
casesb1.1, b1=1, andb1,1. If b1.1, thena*1−b1→0 and
Eqs.(B2) and (B3) become

s2b − b1z0
*dA1a

*−1−b1 = 2A2a
*−b2, sB4d

s2b − b2z0
*dA2a

*−b2 = 2b. sB5d

Equation (B4) implies that b2=b1+1.2, while Eq. (B5)
yields b2=0 andA2=1. Therefore, Eqs.(B4) and (B5) are
mutually inconsistent. The next possibility isb1=1. This
gives

S2b − z0
* +

6

d
A1DA1a

*−2 = 2A2a
*−b2, sB6d

F2b − b2z0
* +

2sb2 + 2d
d

A1GA2a
*−b2 = 2b. sB7d

According to Eqs.(B6) and (B7), b2=2 andb2=0, respec-
tively, which is again inconsistent.

Finally, we consider the caseb1,1, so that Eqs.(B2) and
(B3) reduce to

b1 + 2

d
A1

2a*−2b1 = A2a
*−b2, sB8d

b2 + 2

d
A1A2a

*1−b1−b2 = b. sB9d

These two equations are consistent provided that

b1 = 1
3, b2 = 2

3 , sB10d

A1 = S9d2b

56
D1/3

, A2 = S21db2

64
D1/3

. sB11d

Therefore, for large reduced shear rates,

Pxy
* < − S9d2b

56
D1/3

a*−1/3, sB12d

Pyy
* < S21db2

64
D1/3

a*−2/3. sB13d

It is interesting to remark thatuPxy
* u→0 both for small and

large shear rates. Thus,uPxy
* u exhibits a nonmonotonic depen-

dence ona* characterized by a maximum valueuPxy
* umax at a

certain valueamax
* of the reduced shear rate. For instance, in

the three-dimensional case we have foundsamax
* , uPxy

* umaxd
=s0.64,0.634d, s1.22,0.595d, ands1.81,0.579d for a=0, 0.5,
and 0.9, respectively. A similar nonmonotonic behavior of
uPxy

* u occurs in the elastic case as well[21].
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