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Inherent rheology of a granular fluid in uniform shear flow
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In contrast to normal fluids, a granular fluid under shear supports a steady state with uniform temperature
and density since the collisional cooling can compensate locally for viscous heating. It is shown that the
hydrodynamic description of this steady state is inherently non-Newtonian. As a consequence, the Newtonian
shear viscosity cannot be determined from experiments or simulation of uniform shear flow. For a given degree
of inelasticity, the complete nonlinear dependence of the shear viscosity on the shear rate requires the analysis
of the unsteady hydrodynamic behavior. The relationship to the Chapman-Enskog method to derive hydrody-
namics is clarified using an approximate Grad's solution of the Boltzmann kinetic equation.
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[. INTRODUCTION the density and inelasticity. On the theoretical side, ktal.
[11] have obtained the rheological properties of a dense gas
Consider a fluid between parallel plates in the plane  for small inelasticity, while Jenkins and Richm§t2] have
separated by a distanteand with relative velocityJ along  used a maximum-entropy approximation to solve the Enskog
the positivex direction. Given appropriate boundary condi- equation. This method has been subsequently extended to
tions, the fluid undergoes simple shear with the local velocityhighly inelastic spherefl3]. Selaet al. [14] have solved the
field given byu,=ay, u,=u,=0, wherea=U/L is the con-  Boltzmann equation to third order in the shear rate, finding
stant shear rate. The work done by the plates on the fluidormal stress differences. Some progress has been made by
near the boundaries tends to increase the temperature locallging model kinetic equations for dilute granular gadés,
due to its viscosity. For normal fluids, this is compensated byas well as for dense granular gagd$]. Exact solutions
a heat flux toward the center with a corresponding temperaderived in both cases compare quite well with Monte Carlo
ture gradient characterizing Couette flow in the steady statesimulations, even for strong dissipation. Similar studies for
A quite different steady state is possible for granular fluidsmulti-component systems are much scarcer, although some
where both the temperature and density fields are spatiallecent work has been carried da0,17-19.
uniform, called simple or uniform shear flogSP [1,2]. Normally, transport properties are defined for general
This is possible because the particle collisions in a granulastates with the temperature, shear rate, and restitution coef-
fluid are inelastic and there is a continual loss of energy. Thisicient as independent variables. For example, the shear vis-
collisional cooling can compensate locally for the viscouscosity as given by the Chapman-Enskog solution to the Bolt-
heating so that no heat flux is generated. If the temperatureanann equation[20] has the form for shear flown
at the walls are not controlled the fluid autonomously seeks %(T,a, a), and the Newtonian shear viscosity is obtained
the temperature at which this exact balance between collifrom it at zero shear rateyy(T,a)=7(T,a=0,a). However,
sional cooling and viscous heating occurs. Otherwise, foin the steady state of USF the condition for balancing colli-
fixed wall temperature one or the other will dominate leadingsional cooling and viscous heating implies that the steady
again to Couette flow but with the curvature of the temperastate temperature is a function of the shear e@nd the
ture field controlled by both mechanisms. This more generagoefficient of restitutiorn measuring the degree of inelastic-
case has been discussed in detail elsewlfigfencluding ity of the particles, T;=Ta,a). In this case 7
USF as a special case. Here, attention will be limited to the- 7(Tda,a),a,@)=nda,a)=7,(Ts,). This complication
special features of USF. raises two interesting questions:

The steady USF has been extensively studied. Molecular (1) For sufficiently smalh, is it possible to describe USF
dynamics and Monte Carlo simulatioié—10 have been ysjng Newtonian hydrodynamics?

performed to measure the dependence of the stress tensor on(2) | y(a,a) is measured in USF, can the Newtonian

viscosity 79(T, «) be deduced from it?
The objective of this paper is to answer these two ques-
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between Navier-Stokes hydrodynamics and the hydrodynam- 2
ics for steady shear flow. There is no possibility of using D+ T+ d_n(PiJVJUi +V-q)=0, (2)
USF to study the Newtonian viscositg.g., by molecular
dynamics simulatiop there is no possibility of using the _ _
Navier-Stokes equations to describe USF or states near it Dy + (mn)~'V;P; =0, ©)
(e.g., the stability of USF This is not an entirely negative wheren is the density] is the granular temperatureis the
result, however, because it shows that USF is a rich testingow velocity, D,=d,+u-V is the material derivative; is the
ground for the study of rheology. Any measurement will nec-cooling rate P is the pressure tensor, ands the heat flux.
essarily be illustrating some rheological effect. On physical grounds{ has essentially the forng= (1
These results may seem counterintuitive at first as with-42), where v \T is a mean collision frequency and 1
many conceptual differences between granular and real flu= o2 js the fraction of energy lost in each inelastic collision.
ids. However, the steady state considered here for the grany; order to get a closed set of hydrodynamic equations from
lar fluid does not exist for a real fluid so intuition is not (1) (3) ¢ P, andq must be specified as functionals of the
reliable in this case. The analysis presented here, and illugie|ds n, T, andu. However, some interesting results can be
trated in detail for a dilute gas, is important because similagptained for the purposes here even at this exact level. We
failures of the Navier-Stokes level hydrodynamics must bemphasize that the analysis of this section and its conclusion
expected for other steady states specific to granular fluidgjo not depend on any specific form for the rheological equa-
This peculiar limitation of Newtonian hydrodynamics may tion of state, only its scaling with respect to the available
apply generically when the steady state exists only becausg,drodynamic fieldgdimensional analysjs

of the internal cooling mechanism, rather than as a conse-" An idealized macroscopic state of USF is characterized by
quence of controllable external fields or boundary forcesthe forms[21]

The steady state implies the equivalence of spatial heat con-
duction, viscous heating, and collisional cooling, and a con- ~ n(r,t)=n, T(r,t)=T(t), u,=ay, u,=u,=0. (4

sequent relationship between the heat flux, momentum ﬂuxThe presumed geometry is that described above. More pre-

and cooling ratgsee below For a given cooling raté.e., cisely, this linear velocity profile assumes no boundary layer

ggﬁ?c rﬁ:fggtg‘n Cr?gflfg:r']egztrth;e gcrgr?tlreOr}r: dornfjheep:zgé?]ijlz- tonear the walls and is possible for special periodic boundary
assure the validity of the Newtonian limit. This |ohenomenonCondltlons in the local Lagrangian franf22]. Since the den-

is elaborated further in the next section for USF based on thglr% Ifhi\ cdoen; éigtér;tcgl%%Sp?gpsé?t?ézciﬂt iio\llsil:nb?esg::?r\glszged
macroscopic b.alanc_:e equations for mass, energy, and M2 om symmetry, the cooling rate, heat flux, and pressure ten-
mentum, and idealized boundary conditions for a genera\sl’Or must have the forms in the hydrodynamic state
granular fluid. This analysis assumes only the existence of a
hydrodynamic description, but is not limited to any small ¢(=¢(T(),a,a), q=0, V;pP;=0. (5)
gradient, small inelasticity, or other approximation. A more . - .
detailed illustration from the Boltzmann kinetic theory is 'N€ balance equationd) and(3) are satisfied exactly with
given in Sec. IIl. An important point of this kinetic theory these choices, while Eq2) becomes

analysis is the determination of the rheological equation of 2

state 7(T,a, a) for both steady and unsteady states of USF. oT(t) = - —aP,(T(t),a,a) - {(T(t),a,0)T(t).  (6)

In the unsteady state the temperature incregdesreases dn

depending on whether the viscous heating of the initial statefhe functional forms for the scalars(T,a,a) and

is larger(smallepy than the coIIisio_naI cooling. The three Pa- P, (T,a,@) must be determined from a more microscopic
rametersa, a, T can be controlled independently, and there ispasis. An example from kinetic theory is provided in the next
a small shear rate domain for which the unsteady fluid issection. Then, Eq6) provides a closed hydrodynamic equa-
Newtonian. In the steady state, however, these parametefign to determine the temperatufét) for given initial con-

are constrainedT=Tya,«), such thatn(Ty(a,«),a,a) is  ition T(0) and specification of the constardsand a. The
never in its Newtonian limit for any<1. These results and i term on the right side is positive and represents viscous
their importance for the study of transport in granular ﬂ“'dsheating. To make this more explicit it is usual to introduce
are summarized with comments in the last section. the nonlinear shear viscosity(T,a, a) by

Il. HYDRODYNAMICS FOR USF ny(T,a, a) =-7(T,aa)a. (7)

An idealized granular fluid consists of smooth hard A Newtonian fluid is that for which the viscosity and cooling
spheregd=3) or disks(d=2) of diametero and massn. The  rate becomes independent of the shear rate,
collisions between particles are characterized through a con-

stant coefficient of normal restitutioa with values 0< a 7(T,a,a) — n(T,a=0,a) = (T, a),

=< 1. The elastic limit corresponds te=1. The exact macro-

scopic balance equations for mass, energy, and momentum UT,a,a) — {T,a=0,a) = {(T,a). (8)
are

The corresponding hydrodynamic equation for a Newtonian
Din+nV -u=0, (1) fluid becomes
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GT(D) = = Lo(T(),a) (1) ne(@) = (@) ~ a(a) ~ 1 - a. (14)

2 On the other hand, by expanding the Newtonian shear vis-
2 i— - * ! - . .
Ta dn%(T(t)’a) LOW.aTM . (9 cosity 75(a) around its value in the elastic case, we have
Here, for consistency, the cooling rate also has been ex- Mo(@) = pp(a=1) ~1-a, (15)

panded to second order in the shear rate, for small inelasticities. Therefore, Eg€l4) and (15) show

{(T(0),8,@) — &o(T(1), @) +a%5(T(),a). (10 thatin the quasielastic limit the steady state shear viscosity
_ _ . _ 7.(a) differs from the Newtonian viscosity,(«) as much as

The Newtonian fluid equatio(®) appears quite useful as a the |atter differs from that of the elastic gas. This shows that
means to measure its viscosity. First, the cooling raty measurement of the steady state temperature to determine
4o(T(1), @) is determined by measuring the time dependencgy () does not allow determination of the Newtonian viscos-
of T(t) at different values ofv at zero shear rate. Next, the ity, even for 1-w<1. The @ dependence o%(a):n*(a*
same measurement is performed as a function of the shealy ) cannot be isolated from thex dependence of
rate to determine the combination2/dmno(T(t),a)  ,(a'(a),a). Both viscosities coincide only in the trivial
= {(T(1),a)T(1). In the case,=0 (see the next section for an 4qan,=1.
exampleg this determines the Newtonian viscosity. Two ques- |, summary, for any chosea,a,T(0) the steady state
tions arise at this point. First, can the measurement of th@iscosity is 7' (a.(a),a) and the system samples a non-
Newtonian viscosity be simplified by considering only the \o\\tonian value from the general rheological equation of

steady state? Second, under what conditions does the Newg;;q 7' (@, ) that is always different from the Newtonian
tonian limit for the steady state apply? To answer these ques;

tions we have to take into account that the domain of validity alue.
of the Newtonian description is restricted to small shear
rates. To be more precise, a dimensionless shear rate must be
introduced. The only other relevant fr(/aggency for the fluid is

T(t)

Ill. DESCRIPTION FROM THE BOLTZMANN
KINETIC THEORY

its mean collision frequency(T(t))« T(t). Consequently, To explore this phenomenon in more detail it is necessary
the relevant dimensionless shear rate, cooling rate, and shetar calculate the rheological equation of staféa’, @). This
viscosity are defined by requires a more microscopic analysis such as kinetic theory.
At low density the granular Boltzmann equation provides the
a’(T(t) = a F@,a) = {T).8,) appropriate starting point.

1 a,a)= 1
v(T(1)) y(T(1))
A. Boltzmann equation and Newtonian viscosity
_v(T®)

@)= The Boltzmann kinetic equation determines the probabil-
' nT(t)

ity density f(r,v,t) for a particle to have positiom and
velocity v at timet in a low density gas. It has the form

*

7 (@&

7(T(1),a,a), (11

where"(a", @) and 5'(a",a) can depend on time and tem-
perature only through(T(t)), in order to be dimensionless.
Note that the reduced shear rateis actually a measure of
the granular temperature sinde<a" 2. In the steady state,
Eq. (6) becomes

(% +v- V)f<r,v,t> =J[r v[f(O]. (16)

The right-hand side describes the effects of inelastic pair
collisions. The detailed form of the Boltzmann collision op-

9 _ dZ (@, ) erator, J, is not required here beyond noting the properties
2 7@, (12) necessary for the macroscopic balance equations
The solution to this equation giveg(«), that depends only 1 0
on « and thus cannot be made small by controlling the shear _ 0
ratea. In general,a;(a)<1 only in the quasielastic limit 1 fdv I vif(v)]= d - (17
—a<l —m(v-u)? --nT¢
’ 2 2
. dZo(@) . Here the density, the t turd, and th i
2.y 0 2N ere the density, the temperaturd, and the macroscopic
a5 () 277;(&: 1) % (@) ~1-a<l, (13 flow velocity u are defined in terms df(r,v,t) by
where we have taken into account thgta)=1-a?~2(1 n(r,t)
—a) in the quasielastic limit. In this case the dimensionless n(r,t)u(r,t) v
steady state shear viscosity becomgga)=7"(a (a),a) d = dv f(r,v,t). (18)
— 7' (ay(@), @). Since, according to E¢13), a, is small, the —n(r,t)T(r,t) Em(v -u)?

steady state shear viscosity is expected to differ from the
dimensionless Newtonian viscosityj(a)=7 (a =0,a) by a  The two zeros on the right-hand side of E#7) correspond
(super-Burnejtterm of orderag’: to conservation of mass and momentum, while the last term
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results from nonconservation of energy. The propeiti&  =v,,V,=v,. Consequently, the Boltzmann equatid6) be-
lead to the macroscopic balance equati@hs(3), with the  comes[21]
following microscopic expressions for the pressure tensor,

the heat flux, and the cooling rate: ( aV )f(V t) = JV|FD)]. (27)
Py(r.t) = mf dvViVif(r,v.1), (19) Multiplying both sides of Eq(27) by m\{V; and integrating
over velocity, we get
2
a0 =75 jdVV MU (20 Py +a(04Py; + Py) = mJ AWV IIVIf] = -
mr(@-D12gd-1 (28)

{(rn=01-a?

The exact expression of the collision integra); is not
4dl| —= In(r,HT(r,Y known, even in the elastic case. However, a good estimate
can be expected by using Grad’s approximation

devf dvy|v = vy PE(r,v,Df(r,v, ). (21) P,
f(V) = fo(V) 1+E’<_l S )viv,- , (29
In Egs.(19) and(20), V=v-u(r,t) is the peculiar velocity.
It is straightforward to determine the Navier-Stokes sheaihere
viscosity coefficientyy(T, a) by using the Chapman-Enskog I
method[23]. The result i§20,24,25 fo(V) = n(mV27T)¥2 exp(- mV#/2T) (30)
is the local equilibrium distribution function. When E@9)
70(T, @) = (T) —— mpla), (22)  is inserted into the definition aA;; and terms nonlinear in
P;;/nT-&; are neglected, one gefa6]
where .
grld-Di2 01 [T\ 112 Aij = B(Py = &) + LoPy ], (3D
u(T) = (d+ 2)F(d/2)n<a> (23 Wheregg and g are given by Eq9.25) and(26), respectively.
It is worth noting that Eq(31) coincides with the one ob-
is an effective collision frequency, and tained from a simple kinetic mod¢l5,27.
« . _ The three relevant independent equations fr@8) and
(@) =[ Bl@) + 35(@)] ™ (29 (31)are
Here {y(a)={,/ v is the dimensionless cooling rate in the 2a
homogeneous cooling state, whifa) is a dimensionless dp+ {op+ —Pyy=0, (32
function of the restitution coefficient given in terms of the d
solution to the linearized Boltzmann equation. Explicit re-
sults forg“; and B can be obtained by considering the leading 3Py + (B + {o)Pyy+aPy, =0, (33
terms in a Sonine polynomial expansion. In that approxima-
tion, dPyy+ (B + Lo)Pyy— Brp=0, (34
gg(a) = ﬂ(l -a?), (25)  Wherep=nT=P;/d is the low density pressure. If we define
4d the dimensionless quantities
d-1 ( )= _'JQ a*(t) - &
Bla) = 1- _(1 @) |. (26) ij nT(t)’ - w(T()’
t
B. Uniform shear flow 7(t) =f dt’ u(T(t")), (35)
0

It becomes prohibitively difficult to go beyond Navier-
Stokes order to get the exact full dependence/¢d’, a) on then Eqs(32)—(34) become
a’ from the Boltzmann equation. On the other hand, a good

estimate is provided by considering the leading Sonine ap- e 2
proximation to the distribution functioriGrad’s methoy 24, In a _go+anya ' (36)
[18,26.

In the special case of USF the solution to the Boltzmann
kinetic equati_on is sp.atially uniform when expressed in terms 5TF’;y: _a P;y— P;y<B _ gpxya ) (37)
of the velocity relative to the local flowy,=v,—ay, V, d
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* * 2 * *
afpyy: - Pyy(ﬁ - apxya ) + :8 (38) 14 :\- b

The variabler is the dimensionless time measured as the 1.2} -
average collision number. The solution to these nonlinear
equations gives’, P;y, and P:,y as functions ofr for a given
value of@. The rheological equation of state is then obtained
from

o Ply(7)
7@ (n)=-231—. (39)
a (7
1. Steady state solution 0.4 0.6 0.8 1.0
Consider first the steady state solution. Equat(86) o
gives FIG. 1. Plot of the dimensionless Newtonian shear viscosity
* ng(a) (dashed lingand the dimensionless steady state shear viscos-
pr =_ dggy (40) ity 77;(11) (solid line) for d=3, as given by Eqs(24) and (43),
WS 2ag respectively. Filled circleg28] and open circle§29] represent
simulation data obtained from the numerical solution of the Boltz-
while Egs.(37) and(38) give mann equation by the DSMC method.
Plys= BB+ Pys=—apBB+{)?2 (41 ) 5
L _ _ (@) = 1-—(1-a). (46)
The value ofa’ in the steady state is obtained from EGH)) 2d
and(41),
T Equations(44)<46) confirm the qualitative arguments be-
L dola * hind Egs.(13)—(15). Eliminating « between Eqs(45) and
B(@) =\ g (AL &), (42 46 one has
As anticipated above, it is independent of the initial tempera- 10
ture and shear rate Appendix A shows that the steady state n(@) = 1- a’(a) (47)
solution(41) and (42) is indeed alinearly) stable solution. d(d+2)

The second equality i41) allows one to identify the

steady state shear viscosity as in the quasielastic limit.

. P, .
ns(a) = - ?y =B(a)[B(a) + {(a)] 2. (43 2. Unsteady hydrodynamic solution

The more general solution to Eq86)—38) correspond-
This gives the explicit form for the steady state shear viscosing to hydrodynamics is that for which all time dependence
ity, showing it is also independent of the shear @#nd the  occurs through the hydrodynamic fieldshe Chapman-
initial temperature. Furthermore, its dependence wris Enskog “normal” solution The time dependence is due only

qualitatively different from that of Eq(24) for a Newtonian  tg the temperature for USF which occurs in the dimension-
fluid. This is illustrated in Flg 1, which also shows that the|ess forms above through their dependence @*mt)

analytical results compare favorably well with simulation =5/,(T(t)),
data obtained from the direct simulation Monte Carlo

(DSMC) method[28,29. Clearly, there is no relationship of

the steady state shear viscosity to the Newtonian viscosity at

any value ofa. While the Newtonian viscosity igy(a) > 1,

the steady state viscosity is;(a)<1. In the quasielastic

limit, Eqgs. (24), (42), and(43) yield

* a P* *

Then, using Eq(36), Egs.(37) and(38) become

* _4
nol@) — 1+ 2d (1-aw), (44) 2 2
Wi i ol N
. . d+2 ga’ L 2., ’
a’(@) — ag’(a) = — -, (45) Lo+ Pl
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18f~-. T T —o0=09 ] 20 ' ' '
1.6} e 0=0.5 ] Ll a(0)=0.1
! RS —— o=0 ] ory e a(0)=20 7
14} - L ]
______ ------- steady state 12k ]
1.2 - T ‘..‘“. ] ) \\\\\
n 1.0 [eemcesaTy - - .‘.‘... - a* 0.8 e
0.8}
06l 04 i
0.4 1 . 1 1 1 1

00 02 04 06 08 10 12

FIG. 2. Plot of '(a",@) as a function ofa" for d=3 anda
=0.9(solid line), «=0.5 (dashed ling and a=0 (dotted ling. The
thick dashed line is the locus of pointag, 7,), which are para-
metrically found from Eqs(42) and(43). It intercepts the curves  -P
representings (a’,a) at the steady state valugindicated by
circles. Note that the curvéa;, 77;) ends at the point corresponding
to =0 (represented by a filled cirole

2.
2B-2P (B——P )
aPyy: WP g R

T e 2] o
%o d xy&

This is a set of two coupled nonlinear differential equations p * X

that must be solved with the appropriate boundary conditions 0.6

to get thehydrodynamicsolution. There is a singular point ’ 7 ]

corresponding to the steady state solutidd) and (42), in 05t i

which case the numerators and denominators of E4. 1/

and(50) vanish. 0.4 o . . , _ , ]
The unsteady hydrodynamic solutionsy (a, ) 0 10 20 30

——P;y/a* are illustrated in Fig. 2 for three different values of

a. Als*o shown are the special*values of the steady state shea. T

ratea,(a) and sh_ear V*ISCE)SIWS_(&) for each curve. For each FIG. 3. Time evolution of the reduced shear ratér), the re-

value ofa the point(ag, 7) splits the curvey (a) into tWo y coq shear stres$5(7), and the reduced normal stre%ﬁ,(r for

physically different branches, one far <ag and another d 3, «=0.5, and two different initial conditionsti) a'(0)=0

one fora’ >a~s Suppose that for a glven shear raend (0)_ -0.1, p ,(0)=1 (solid lines, and (i) a'(0)=2, P, (0)

initial temperatureT(0) the value ofa” is less than that for 0 5, p [0)= O 4(dashed hne)s The horizontal dotted ||nes rep-

the steady statea*(0)=a/v(T(0))<a;. The cooling domi-  resent the steady state valugs=0.812, P, .=0.577, andP

nates viscous heating in this case and the temperature de0.667.

creases, leading to a larger valueatr). In this way, the

system evolves according to the hydrodynamic equations

along the curve until the steady state vatges attained, i.e., a*(O) 0.1, P, ( 0)=-0.1, Pyy(O) 1, and (i) a'(0)=2,

a (T)*)as as7—o0. A parametric plot ofy () versusa’(7) (O)— -0.5, P ,(0)=0.4. In both cases, after about 20-30

glves the branch of the curvey’(a’) corresponding to coII|S|ons per parucle the system reaches a common steady

a’ <as Analogously, a heating process occurs in the oppostate with a,5 0.812, -P =0.577, andP s=0.667. We

site case of an initial value fa' greater than that for the have checked that the same asymptotic state is achieved

steady state until lim.., a"(7)= aS again. This provides the when starting from different initial conditions.

branch corresponding ta’ >aS As aanmple Fig. 3 In order to get the branch of the hydrodynamic solution

shows the time evolution o&" (7)< 1/\T(7), — xy(’]') and  corresponding t@*<a; one must apply the physical bound-

P;y(r) for «=0.5 and two different initial conditions(i) ary condition

-~
-

o - -

Xy,s
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lim #'(@",a) = 778(01), lim P;y(a*,a) =1. (51) simulation of steady USF has been used for real fluids to
a—0 a—0 measure the Newtonian shear viscosity. The analysis here
shows that this is not possible for granular fluids. More gen-
: . . erally, it provides a caution regarding the simulation of other
g ﬁg?Sg)bf/a't?]e?hgﬁ’nﬁgr?gngil:ig‘:r'cally the coupled (@ steady states to study Navier-Stokes hydrodyr_1a_mics when
the gradients are strongly correlated to the collisional cool-
p;y: - 702 (0), p;y: 1 (52) ing. On a more positive note, these results show that USF is
o, an ideal testing ground for the study of rheology since any
with &(0)=10"". . choice of the shear rate ardwill provide non-Newtonian
As said before, the branch correspondingaio>a, is  effects. It is one of the fascinating features of granular fluids
inaccessible starting from an initial valaé(0) <a,. There-  that phenomena associated with complex fluids are more eas-
fore, in order to obtain; (a") for a" >a,, one must take the ily accessible than for simple atomic fluigi30].
boundary condition at the point at infinity. For that case, The macroscopic state of steady uniform shear flow is
simple physical intuition is not enough to determine the apsimple in the sense that it is spatially uniform in the local
propriate boundary conditions, so one must resort to a de-agrangian frame, and the only hydrodynamic gradient is
tailed asymptotic analysis of Eq§49) and (50). Such an that of the velocity field characterized by the scalar shear rate
analysis is carried out in Appendix B, where we find thata. Non-Newtonian effects occur through the dependence of

In practice, the branch*<a; for each curve of Fig. 2 has

—P;y~ als P; ~a 23 for asymptotically largea”. More  the shear viscosity on the shear rate. The condition for a
specifically, if tffne shear rata’ is much larger than 1, then steady state is an exact balance between viscous heating and
o \1/3 collisional cooling. It is shown in Sec. Il that this implies a
. 9d°B . . . 7
Py="— (—) s, (539  Value of the appropriate dimensionless shear rate that is fixed
o 56 by the restitution coefficient. Hence, it is not possible to

make this hydrodynamic gradient small, as required for the
. 21dB?\ 13 o3 Newtonian limit, by any initial control ofa or the initial
vy~ 64 a . (53b) temperature. Further quantitative illustration of this is given
. in Sec. lll where the shear rate dependence of the shear
The brancha’>a; in Fig. 2 has been obtained from the viscosity is determined from an approximate Grad’s solution
numerical solution of the coupled s@t9) and(50) with the  of the Boltzmann equation. The temporal approach to the
initial conditions(53) with a"(0)=10. steady state via cooling or heating proceeds along a rheologi-
cal equation of state shown in Fig. 2, but the final steady
state is independent of the initial conditions and lies in the
non-Newtonian domain for any value of the restitution coef-

The primary observation here has been that granular fluigécient a# 1. One consequence is that experimental or simu-
admit hydrodynamic steady states that are inherently beyon@tion measurements in steady USF provide no information
the scope of the Navier-Stokes or Newtonian hydrodynami@oout Navier—Stokes transport.
equations. The reason for this is the existence of an internal This phenomenon of peculiar steady states for granular
mechanism, collisional cooling, that sets the scale of the spdluids extends to other states as well. The steady state mac-
tial gradients in the steady state. For normal fluids, this scalE2Scopic balance equations are
is set by external sourcegoundary conditions, driving V. (nu)=0 (54)
forceg that can be controlled to admit the conditions re- '
quired for Navier-Stokes hydrodynamics. In contrast, colli- )
sional cooling is fixed by the mechanical properties of the . __‘ b o) =
particles making up the fluid. An example is a sheared fluid u-vinT dnT(P”V’u' VA= (55
where the work done at the boundaries is balanced by a
combination of collisional cooling and internal heat flux. To u- Vu+(mnv,p; =0, (56)
illustrate and emphasize these effects in more detail and
quantitatively, we have considered the idealized state of uniln the absence of collisional cooling the spatial gradients can
form shear flow(USF), for which no heat flux occurs. The be sustained only by boundary conditions or external forces.
Lees-Edwards boundary conditions generating USF canndtowever, for finite{ spatial gradients can exist that are not
be applied in experimental conditions, although they can beontrolled by such external sources and their size may pre-
easily implemented in computer simulations. However, evertlude the validity of simple Navier-Stokes hydrodynamics.
for the laboratory conditions of Couette flow the cooling rateEach physical state should be checked for this possibility.
will still be a function of the hydrodynamic gradients leading  As another simple example, consider the steady state of a
to similar non-Newtonian behavior. granular gas enclosed between two parallel plates at rest and

In spite of the extensive prior work on USF for granular maintained at the same temperature. For elastic particles
fluids, the observation about its inherent non-Newtoniarsuch a steady state is trivially that of equilibrium at the wall
character is apparently new although implicit in results obtemperature. Nevertheless, for a granular gas the collisional
tained from various modelge.g., the observation that? dissipation induces a heat flux, cf. E(5), and hence a
~1-a). This is significant because molecular dynamicsthermal gradient, along with a density gradient, exists

IV. DISCUSSION
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[31-33. In the quasielastic limit, the kinetic model of the 1.2 T T r T
Boltzmann equation proposed in Rg27] admits a soluton
characterized by a constant pressprenT and a heat flux 1.0k " Rel e ~
given by[34] I 23
d+2 p 08¢ )
=—-———\ () VT, 5 3 -
g 2 my s(@) ®7) 'g 0.6} ]
£ !
0]
where _%n 04l i
. 290° + 116d - 28 [ I
1+———m 1~ ). L 1 -
N =1+ == oA, (59) 0.2

On the other hand, the expression for the heat flux in the 0.0 * *
Navier-Stokes order given by the Chapman-Enskog expan- 0.0 0.2 0.4 0.6 0.8 1.0

sion is[20,24,25 o

: _d+2p= FIG. 4. Plot of the eigenvalué, and of the real part of, 3 as a

9="No(@) VT~ pol@) Vn=- 2 E}‘O(O‘) VT, function of the coefficient of restitution in the three-dimensional
case.
(59

where\, is the thermal conductivityy, is a transport coef- sa’ sa
ficient with no ana!og in the elastic case, and in the last step Fl 5P:<y ——L. 5P;y , (A2)
we have taken into account th&p=0, so that Vn £ ok X gk

=—(n/T)VT. The expression for the dimensionless effective % vy
thermal conductivity)\g(a) in the quasielastic limit is

wherelL is the matrix
3d-4

4d

Ny(a) — 1+ (1-a). (60)

o o2 —{B+2B 0
Equations(58) and (60) clearly show that (a) # Ay(@). In L=| gA(B+L)? B+24, 1 | (A3)
the three-dimensional case, for instance, the coefficient of « x x x .
1-a in N (@) is about 20 times larger than that bf(«). PL/(B+ &) LB+ Bl
Therefore, the Navier-Stokes transport coefficients do not de-
scribe correctly the heat flux in the steady state, except agaiy £q. (A3) use has been made of the explicit expressions

in the trivial case of elastic collisions. (41) and (42) for the steady state solution. The time evolu-
tion of the deviations from the steady solution is governed by
ACKNOWLEDGMENTS the eigenvalues df. If the real parts of those eigenvalues are

positive the steady solution is linearly stable, while it is un-
A.S. and V.G. acknowledge partial support from the Min- staple otherwise. The solution of the characteristic equation
isterio de Ciencia y Tecnologigpain through Grant No. detL;;—¢8;)=0 yields a real eigenvalué; and a pair of
FIS2004-01399. The research of J.W.D. was supported b¥0mp|ex conjugate eigenvalués, £5. We have verified that
Department of Energy Grant Nos. DE-FG03-98DP00218 ang¢, and the real parts df, ; are positive definite for all values

DE-FGO2ERS54677. of the coefficient of restitutiomr<<1, €, being smaller than
Re ¢, ;. Consequently, the steady state solution is stable, and
APPENDIX A: LINEAR STABILITY ANALYSIS the characteristic relaxation tintmeasured by the number of
OF THE STEADY STATE SOLUTION collisions is ¢;*. As an illustration, Fig. 4 shows the

a-dependence of, and Ref, 5 for d=3. It is interesting to
In this Appendix we carry out a linear stability analysis of hote that¢,—0 in the elastic limita— 1. This is a conse-
the steady state solutigdl) and(42) of the set of evolution  guence of the fact that there is no steady solutiomatl,
equationg36)—(38). First, we write namelya’(7) decays algebraically & (7) = (27/d)"Y2
The above stability analysis is restricted to small devia-
tions from the steady state solution. The proof that the steady
state solution is an attractor as- o for any uniform(in the
p;y(q-) = p;ys+ 5p;y(7)_ (A1) Lagrangian framginitial condition seems to be quite diffi-
' cult, so that one has to resort to numerical evidence. As was
Substituting(Al) into Egs.(36)—(38) and neglecting nonlin- illustrated in Fig. 3, the numerical results confirm that the
ear terms, one gets steady state is indeed an attractor.

a(D=ag+da (7, Pyl(n) =P+ P (7,
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APPENDIX B: HYDRODYNAMIC SOLUTION
FOR LARGE SHEAR RATES

In this Appendix we will get the asymptotic behavior of
the solution to Eqs(49) and (50) for large values of the
reduced shear rat& . On physical grounds, the asymptotic

solution must have the general form,
* b * ~ *—b
P, L, Py~ A a2,

y=—A@" (B1)

where A; >0, A,>0, andb,=0. Inserting(B1) into Egs.
(49) and(50), one has

20, +2) ) .

" .a 1‘b1] Aja 1 Pr=2A,8" 2,

{2/3— bylo+
(B2)

2(b,+2 N *
wAla l—b11| A2a by — Zﬁ (BS)

[2ﬁ—b21:6+ a
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« 2by,+2 "
2B =Dbyly+ MAI AaP2=2p. (B7)
According to Eqgs(B6) and (B7), b,=2 andh,=0, respec-
tively, which is again inconsistent.

Finally, we consider the casg <1, so that Eqs(B2) and

(B3) reduce to

In order to carry out a balance analysis of the leading terms  1parefore. for large reduced shear rates

in (B2) and(B3), it is convenient to consider separately the

cased, >1,b;=1, andb,; < 1. If b;>1, thena™ 21— 0 and
Egs.(B2) and(B3) become

(28— bylAa ™t P=2Aa""2, (B4)

(28— bylp)Aa ™2 =2p.

Equation (B4) implies thatb,=b;+1>2, while Eg. (B5)
yields b,=0 andA,=1. Therefore, Eqs(B4) and (B5) are
mutually inconsistent. The next possibility Is=1. This
gives

(B5)

* 6 *. *.
(Zﬁ -0t aA1>A1a 2=2Aa" P2, (B6)

b + 2 *. *.
A2 2= A2, (B8)
b, +2 .
Z_SA AT = g (B9)
These two equations are consistent provided that
bi=3 by=3, (B10)
9d2 1/3 21d 2\ 1/3
A= (—B) . A= B . (B11)
56 64
. 9d2ﬁ 1/3 1
ny%—<—56 ) a ", (B12)
) 21d52 1/3 o
F’yyz (W) a . (B13)

It is interesting to remark thd®, |—0 both for small and
large shear rates. Thdﬁ’,;y| exhibits a nonmonotonic depen-
dence oma’ characterized by a maximum val¢@;y|max at a
certain valuea,,, of the reduced shear rate. For instance, in
the three-dimensional case we have fouiaf,.|P,/ma)
=(0.64,0.634, (1.22,0.595, and(1.81,0.579for «=0, 0.5,
and 0.9, respectively. A similar nonmonotonic behavior of
|P,,| occurs in the elastic case as wil].
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